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The oxidation of secondary alcohols is one of the most common
and well-studied reactions in chemistry.1 Although excellent
catalytic enantioselective methods exist for a variety of oxidation
processes, such as epoxidation,2 dihydroxylation,3 and aziridina-
tion,4 it is surprising that there are relatively few catalytic
enantioselective examples of the ubiquitous alcohol oxidation.5

In connection with a general program dealing with the discovery
of new catalytic oxidation systems, we present herein the
development of a catalytic oxidative kinetic resolution of second-
ary alcohols that uses molecular oxygen as the terminal oxidant
(see Scheme 1).6-8

Among the many hundred known processes for alcohol
oxidation,9 comparatively few metal-catalyzed examples have
been developed.10 One notable exception has been the use of
catalytic palladium(II) systems, which often provide efficient
oxidation ofsec-alcohols to ketones in high yield.11 Interestingly,
palladium(II) oxidations have been successfully implemented

using a wide variety of co-oxidants, including allyl carbonates,
aryl halides, CCl4, and molecular oxygen. We have investigated
a number of these general systems in the presence of chiral ligands
and studied the kinetic resolution ofsec-alcohols. Although the
nonenzymatic kinetic resolution ofsec-alcohols via acylation has
been extensively studied by the groups of Vedejs, Fu, Miller, and
others,7 oxidative methods for alcohol resolution remain rare.12

Furthermore, to our knowledge there are no reported examples
of palladium-catalyzed oxidative kinetic resolutions ofsec-
alcohols.

From exploratory studies that focused on chiral phosphine
ligands, it was rapidly established that modest levels of asym-
metric induction were attainable in the presence of organic
oxidants.13 Although initially promising, reactions carried out
under these conditions were plagued by a variety of side reactions
and inconsistencies.14 In an effort to minimize the complexity of
the reaction conditions, we turned our attention toward catalytic
systems that employ oxygen as the stoichiometric oxidant. Using
1-phenylethanol as a test case, we surveyed a number of variations
of the catalytic reaction and found that the conditions developed
by Uemura11f were particularly suited to the rapid screening of a
variety of chiral ligands. From the structurally diverse set of
ligands explored for the oxidation reaction (see Table 1), (-)-
sparteine quickly emerged as the most selective. Upon further
optimization, the nature of the palladium source was found to be
critical (see Table 2). Thus, substituting PdCl2 for Pd(OAc)2
induced a marked increase in the selectivity factor (s).13b For
example, oxidative kinetic resolution of 1-phenylethanol using
Pd(OAc)2 proceeded with a selectivity factor of 8.8, whereas the
analogous resolution using PdCl2 was found to have a selectivity
factor of 16.3, thereby providing acetophenone in 62.6% conver-
sion and unreacted alcohol of 98.0% ee. Further evaluation of
the palladium source revealed that Pd(nbd)Cl2 provided the most
selective catalytic system tested to date (Table 2, entry 7,s )
23.1).15,16
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With the optimized system in hand, we initiated investigations
into the reaction’s scope. As shown in Table 3, we have
demonstrated that palladium-catalyzed kinetic resolutions with
(-)-sparteine as a ligand provide uniformly excellent levels of
asymmetric induction with a variety of activated alcohols (i.e.,
benzylic and allylic).17 Benzylic alcohols with functionalized
aromatic rings serve particularly well as substrates for the
resolution, with selectivity factors as high as 47.1 (entries 1-7).
Additionally, the resolution is not limited to 1-substituted ethanol
derivatives (entries 7-9). Substrates containing fused ring systems
can also be accessed in high levels of enantiopurity (entries 8
and 9, ee> 93%). Importantly, the potential utility and versatility
of the catalytic oxidative kinetic resolution is further established
by the reaction of a substituted allylic alcohol (entry 10).18

Particularly noteworthy is the preparative reaction shown in
Scheme 2. The oxidative kinetic resolution performs well on
multigram scale with good recovery (44%) of optically enriched
alcohol (-)-3 in 99% ee. Quantitative reduction of ketone4
provides an opportunity for the preparation of chiral alcohol(-)-3
in >50% overall yield from a racemic mixture via multiple
oxidative kinetic resolution cycles.

In conclusion, we have developed the first palladium-catalyzed
oxidative kinetic resolution of secondary alcohols. The resolution
employs molecular oxygen as the terminal oxidant in conjunction
with the naturally occurring diamine ligand (-)-sparteine.19 Efforts

to expand the scope of the resolution17,20 and to understand the
observed selectivity of this reaction are ongoing.
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Table 1. Ligand Screen for the Pd-catalyzed Oxidative Kinetic
Resolution of 1-Phenylethanol.

a 5 mol % Pd(OAc)2, 20 mol % ligand, 1 atm O2. b For ligand
structures, see Supporting Information.

Table 2. Importance of the Palladium Source for the Oxidative
Kinetic Resolution of 1-Phenylethanol

a 5 mol % Pd, 20 mol % (-)-sparteine, 1 atm O2. b nbd )
norbornadiene.

Table 3. the Oxidative Kinetic Resolution of Secondary Alcohols

a 5 mol % Pd(nbd)Cl2, 20 mol % (-)-sparteine, 1 atm O2, 0.1 M
substrate concentration in PhCH3. b Isolated yield of enantioenriched
alcohol is presented first. The number in parentheses is the total
combined yield of alcohol and ketone.c The degree of enantioselectivity
was measured directly by chiral HPLC or GC of the recovered alcohols.
Conversion was measured by GC using a DB-WAX column. See
Supporting Information.d Selectivity (s) values represent an average
of at least two experiments, while conversion and ee values are for
specific cases.e For each entry, comparable selectivities are observed
throughout the course of the run.f Performed at 60°C.
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